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As classical imaging fails with diffusive media, one way to image a multiple-scattering medium is to achieve
local measurements of the dynamic transport properties of a wave undergoing diffusion. This paper presents a
method to obtain local measurements of the diffusion constant D in a multiple-scattering medium. The experi-
mental setup consists in an array of programmable transducers placed in front of the multiple-scattering
medium to be imaged. By achieving Gaussian beamforming both at emission and reception, an array of virtual
sources and receivers located in the near field is constructed. The time evolution of the incoherent component
of the intensity backscattered on this virtual array is shown to represent directly the growth of the diffusive
halo as �Dt. A matrix treatment is proposed to separate the incoherent intensity from the coherent backscatter-
ing peak. Once the incoherent contribution is isolated, a local measurement of the diffusion constant is
possible. The technique is applied to image the long-scale variations of D in a random-scattering sample made
of two parts with a different concentration of cylindrical scatterers. This experimental result is obtained with
ultrasonic waves around 3 MHz. It illustrates the possibility of imaging diffusive media from local measure-
ments of the diffusion constant, based on coherent Gaussian beamforming and a matrix “antisymmetrization,”
which creates a virtual antireciprocity.
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I. INTRODUCTION

Multiple scattering of waves concerns many domains of
physics, ranging from optics or acoustics to solid-state phys-
ics, seismology, medical imaging, or telecommunications
�1–14�. In an inhomogeneous medium where the wave celer-
ity c depends on the spatial coordinates r, it is a classical
approach to consider a scattering sample as one realization of
a random process, and study statistical parameters such as
the mean, variance, and correlation of the field amplitude or
intensity. Under this approach, several physical parameters
are relevant to characterize wave propagation in scattering
media: the scattering mean-free path le, the transport mean-
free path l*, the diffusion constant D, the absorption length
labs. From an experimental point of view, these parameters
can be measured by a variety of experiments. Some of them
involve measurements of the ensemble-averaged field trans-
mitted through a scattering layer �15–20�. One can also study
the variations of the mean intensity with time �“time-of-
flight” distribution� �20–24�, and fit the result with a radia-
tive transfer or a diffusive model. The coherent backscatter-
ing effect �25–29� can also be taken advantage of to measure
the diffusion constant D and the transport mean-free path l*

�30,31�. The advantage of backscattering measurements is
that they can be obtained even if only one side of the me-
dium is accessible. Moreover, in a thick scattering sample
�L� l* with L the medium thickness�, the transmitted signal
is much less energetic. As to classical imaging techniques,
they fail when multiple scattering predominates. However,
one can still hope to measure the long-scale spatial variations

of the diffusive parameters and build a map. The resulting
image would not be an image of the celerity c�r� but e.g., of
the diffusion constant D�r� and would therefore have a dif-
ferent resolution. Indeed, an ideal image would give details
with a length scale of the order of the correlation length � of
the celerity fluctuations. Experimentally, in a highly scatter-
ing medium where diffuse fields are used to build an image,
a map of the diffusion constant D�r� would have a resolution
of the order of the transport mean-free path l*, at best. Intrin-
sically, the measurement of D cannot be exactly local, since
the wave has to be scattered �hence, to travel over a distance
L of the order of a few mean-free paths� before it makes
sense to speak of wave diffusion. So there are essentially
three length scales in ascending order: �, l*, and L. Even
though classical imaging fails in diffusive media, one can try
to build maps of D, with a resolution given by L. This is
similar to what can be done in seismology, where the coda Q
factor is found to be a regional constant �9�, or in medical
imaging �13�, where diffuse optical tomography is used to
reconstruct the internal distribution of the reduced-scattering
coefficient in the breast.

Here, we investigate the possibility of measuring spatial
variations of the diffusion constant in a scattering medium,
based on the mean dynamic backscattered intensity and near-
field Gaussian beamforming. In acoustics, the diffusion con-
stant D can be estimated from the coherent backscattering
�CB� effect �30�. It is well known that dynamic CB is a
signature of multiple scattering and manifests itself as a peak
in the backscattered intensity with a typical angular width
� /�Dt. However, this result is only valid in the far field,
when the source-sample distance a is very large compared to
�Dt. In that case, the whole sample is illuminated by a qua-
siplane wave. In order to obtain a local measurement of D,
the source can be brought close to the medium, but in that
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case, the angular width of the CB peak depends only on the
wavelength and the source size �11,32�, and brings no infor-
mation on the diffusion constant. However, in the ensemble-
averaged backscattered intensity, there are two contributions:
the so-called coherent part �which is responsible for the CB
peak� and the incoherent background. We show that, if the
source and receivers are strongly directive �collimated
beams� and located in the near-field, the incoherent intensity
exhibits the growth of the diffusive halo with time: the width
of the incoherent contribution does depend on the diffusion
constant, unlike the coherent contribution. Basically, in a
typical near-field experiment, the angular distribution of the
backscattered intensity at a given time has the following
shape: a narrow, steep peak �the coherent contribution�, on
top of a wider pedestal that widens with time �the incoherent
contribution� �see Fig. 2�. The problem is that it is difficult to
distinguish between the coherent and the incoherent contri-
butions, especially at early times. In addition, speckle fluc-
tuations cannot be entirely averaged out by spatial averaging,
in order to maintain a significant resolution.

In this paper, we present an experimental illustration of a
method that allows one to separate the coherent and the in-
coherent contributions, and obtain a local measurement of
the diffusion constant from the near-field backscattered in-
tensity. The experiment utilizes programmable piezoelectric
elements that transmit and receive ultrasound waves around
3 MHz. Gaussian beamforming is applied to incoming and
outgoing wave fields, in order to create arrays of virtual
sources and receivers at the surface of the sample. It is simi-
lar to seismic measurements �10� where geophones sit at the
surface of the Earth, except that sources and receivers are not
pointlike but strongly directive, as Gaussian beams are col-
limated. The source/receiver responses form a transfer ma-
trix, which is symmetric because of reciprocity. Yet, this
transfer matrix can be “made antisymmetric” to separate the
coherent from the incoherent part. By “made antisymmetric,”
we mean that the upper matrix elements are kept unchanged
while the diagonal elements are nulled and the sign of lower
matrix elements is reversed. Once the coherent contribution
is subtracted, the diffusion constant is retrieved by fitting the
evolution of the incoherent contribution with time. The me-
dium under investigation consists of two adjacent random
collections of steel rods, with different densities
�29 rods/cm2 and 12 rods/cm2�, hence the diffusion constant
is not homogeneous but shows long-scale variations. The
spatial dependence of the diffusion constant is measured and
exhibits a cutoff at the border between the two parts of the
random-scattering sample. The experimental result shows the
possibility of imaging random media based on local mea-
surements of the diffusion constant.

II. NEAR-FIELD BEAMFORMING WITH GAUSSIAN
BEAM

A. Experimental setup

The experiment takes place in a water tank. We use an
N-element ultrasonic array �N=128� with a 3 MHz central
frequency and a 2.5–3.5 MHz bandwidth; each array ele-
ment is 0.39 mm in size and the array pitch p is 0.417 mm.

The sampling frequency is 20 MHz. The first step of the
experiment consists in measuring the interelement matrix of
the array �see Fig. 1�. A 100-�s-long linear chirp is emitted
from transducer i into the scattering sample immersed in
water. The backscattered wave is then recorded with the N
transducers of the same array. The operation is repeated for
the N emitting transducers. The response from transducer i to
transducer j is correlated with the emitted chirp, which gives
the impulse response hij�t�. The N�N array response matrix
H�t� whose elements are the N2 impulse responses hij�t� is
thus obtained. Because of reciprocity, hij�t�=hji�t� and H�t�
is symmetric. A classical way to build the coherent back-
scattering cone is to calculate directly the angular distribu-
tion of the backscattered intensity by averaging hij

2 �t� over all
pairs �i , j� separated by the same angle �30,31,33�. Here, as a
local measurement of the diffusion constant is required,
Gaussian beamforming is applied to the H matrix before
computing the intensity.

B. Gaussian beam

A Gaussian beam can be expressed as �34�

��x,z,k� =� 2

�

exp�j�	0 − 	�z���
w�z�

�exp�− j
kx2

2R�z�
−

x2

w2�z�	exp�jkz� . �1�

This expression describes the beam amplitude as a function
of the transversal coordinate x and the axial coordinate z. k is
the wave number. w�z� is the beam width; its evolution along
the direction of propagation z is

FIG. 1. Experimental setup: a 128-element linear array is placed
in front of a random-scattering sample at a distance a. The whole
setup is immersed in a water tank. The array is parallel to the
scattering slab. Each array element is controlled by independent
D/A and A/D converters. Gaussian beamforming allows one to send
a collimated beam entering at x=XE in the emitting mode and to
receive a collimated beam coming out at x=XR in the receiving
mode. The beam is characterized by its waist width w0 and the
Rayleigh range zr that defines the area where the Gaussian beam is
collimated. The focal spot of the Gaussian beam is centered at a
distance zr /2 behind the surface of the scattering sample.
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w�z� = w0�1 + 
 z�

�w0
2�2

. �2�

The beam width w�z� reaches its minimum value w0 at z=0.
This parameter w0 is usually known as the beam waist width.
R�z� is the radius of curvature of the wave front of the
Gaussian beam. Its dependence with z is as follows �34�:

R�z� = z�1 + 
�w0
2

z�
�2	 . �3�

	�z� is known as the Guoy phase shift,

	�z� = tan−1
 z

zr
� . �4�

zr is the Rayleigh range �34�,

zr =
�w0

2

�
. �5�

zr gives the longitudinal dimension of the focal region; it is
similar to the depth of field of a lens. In the region of the
beam waist, the Gaussian beam can be considered as colli-
mated and its expression simplifies into

�
x,−
zr

2

 z 


zr

2
,k� �� 2

�w0
2 exp�−

x2

w0
2	exp�jkz� .

�6�

Figure 1 depicts the Gaussian beams. As collimated beams
are needed to obtain a simple expression of the incoherent
intensity �see Sec. II D�, the Gaussian beam is not focused
exactly at the surface of the sample but at a distance of zr /2
behind the surface, in order to maximize the range over
which the Gaussian beam is collimated within the random
medium.

C. Gaussian beamforming

To achieve Gaussian beamforming, the time signals hij�t�
are first truncated into 10-�s-long overlapping windows:
kij�T , t�=hij�T+ t�WR�t� with WR�t�=1 for t� �0,10 �s�,
WR�t�=0 elsewhere. For each value of time T, the kij form a
matrix K. A short-time Fourier analysis is achieved by a
fast-Fourier transform �FFT� and gives the response matrices
K�T , f� at time T and frequency f . XE and XR are the trans-
versal positions of Gaussian beams in emission and recep-
tion, respectively �see Fig. 1�. From K�T , f�, a virtual re-
sponse matrix KGB�T , f� is built; each of its elements
kXE,XR

GB �T , f� correspond to the responses at the frequency f
and time T between the emitted beam �at XE� and the re-
ceived beam �at XR�. The superscript GB stands for “Gauss-
ian beamforming.” The elements kXE,XR

GB �T , f� are calculated
as follows:

kXE,XR

GB �T, f� = 
l=1

N


m=1

N

klm�T, f��
xl − XE,− a − zr/2,
2�f

c
�

��
xm − XR,− a − zr/2,
2�f

c
� . �7�

N is the number of array elements. Equation �7� constitutes
the Gaussian beamforming process.

With Parseval’s theorem, the backscattered intensity
IGB�XE ,XR ,T� can be obtained by integrating the squared
norm of the responses kXE,XR

GB �T , f� over the frequency band-
width �2.5–3.5 MHz�. The results are averaged for all
source/receiver couples that are separated by the same dis-
tance X= �XE−XR�. Thus, the averaged backscattered intensity
IGB�X ,T� after Gaussian beamforming is determined as

IGB�X,T� = ��kXE,XR

GB �T, f��2� f ,�XE,XR�, �8�

where the symbol � � denotes an average over the variables in
the subscript. This quantity is �ideally� the intensity that
would have been obtained at time T with a Gaussian-shaped
source and a Gaussian-shaped receiver separated by X and
located at distance zr /2 below the surface. The typical size of
these virtual sources and receivers is controlled by the pa-
rameter w0.

D. Expression of the coherent and incoherent intensities

In this subsection, the expressions of incoherent and co-
herent components of the intensity are determined from the
theoretical studies by Akkermans et al. �27� �far field� and
Margerin et al. �35� �near field� and applied to our experi-
mental configuration. Let us introduce some notation.
R1�x1 ,z1� and Rn�xn ,zn� are the position vectors of the first
and last scatterer along a scattering path, respectively. The
emitted beam is centered at XE=0 for simplicity and the
received beam at XR=X. The emitted and backscattered
beams �in�0,R1� and �out�Rn ,X� cannot be directly ex-
pressed with Eq. �6�, because the presence of scatterers
causes the wave packet to lose energy during the propagation
through the random medium. As a consequence, on average,
the emitted and backscattered beams decay spatially as
exp�−�z+zr /2� / �2le��, where le is the scattering mean-free
path. Equation �6� is valid in the beam waist region. Thus, if
the scattering mean-free path le is less than or equal to the
Rayleigh length zr, the first and last scattering events take
place in the beam waist region. Then, the incident and back-
scattered beams �in�0,R1� and �out�Rn ,X� can be expressed
as

�in�0,R1� �� 2

�w0
2 exp�−

x1
2

w0
2	

�exp�−
�z1 + zr/2�

2le
	exp�jkz1� , �9�
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�out�Rn,X� �� 2

�w0
2 exp�−

�xn − X�2

w0
2 	

�exp�−
�zn + zr/2�

2le
	exp�jkzn� . �10�

To model the diffusive propagation from R1 to Rn, the
Green’s function for the intensity P�R1 ,Rn ,T� in the random
medium has to be introduced. P�R1 ,Rn ,T� is the probability
distribution to go from R1 to Rn in a time T for a random
walker with the appropriate boundary conditions. For large
lapse times, the Green function of the radiative transfer equa-
tion P�R1 ,Rn ,T� can be approximated by the solution of the
diffusion equation �36�. The expression of P�R1 ,Rn ,T� for a
semi-infinite medium �27� can be extended for a scattering
slab �37� as follows:

P�R1,Rn,T� =

exp�−
�x1 − xn�2

4DT
	

�4�DT

�
m=1

�

sin
m��z1 + zr/2 + z0�

B

�sin
m��zn + zr/2 + z0�

B
exp
−

m�2DT

B
� ,

�11�

where z0 comes from the exact solution of the Milne prob-
lem, which tells us that P cancels on the plane z=−zr /2−z0
with z0=�l* /4 �l* is the transport mean-free path�. B=L
+2z0 is the effective thickness of the medium. Finally, the
incoherent and coherent intensities can be expressed as

Iinc�0,X,T� � � � d2R1d2Rn��in�0,R1��2P�R1,Rn,T�

���out�Rn,X��2, �12�

Icoh�0,X,T� � � � d2R1d2Rn�in�0,R1��in
* �0,Rn�

�P�R1,Rn,T��out�R1,X��out
* �R1,X� .

�13�

Equations �12� and �13� neglect the propagation times before
the first scattering and after the last scattering and are there-
fore valid when time T is much larger than the scattering
mean-free time le /c. In Eqs. �9�–�11�, the variables x1 and xn
are separated from the variables z1 and zn. Thus, the calcu-
lation of integrals of Eqs. �12� and �13� is straightforward,
and under the assumption w0

2�4DT, the final results are

Iinc�0,X,T� � �4�DT�−1/2 exp
−
X2

4DT
�Iz�T� , �14�

Icoh�0,X,T� � �4�DT�−1/2 exp
−
X2

w0
2�Iz�T� , �15�

where Iz�T� is the result of integrations on z1 and zn and is
given by

Iz�T� = 
m=1

�

exp
−
m�2DT

B
��� 1

le
2 + 
m�

B
�2	−1

��m�

B
cos

m�z0

B
+

1

le
sin

m�z0

B
	�2

. �16�

The final expression of the incoherent intensity of Eq. �14�
can be given a physical representation: the term exp�− X2

4DT
�

represents the growth of the diffusive halo from which a
local measurement of the diffusion constant may be ob-
tained. The expression of the coherent intensity �Eq. �15��
shows that the width of the coherent backscattering peak
does not display any time dependence, as the use of colli-
mated beams at the surface of the sample corresponds to a
near-field configuration. The typical width of the CB peak is
therefore given by w0. In this theoretical study, several as-
sumptions have been made. First, the scattering mean-free
path le has to be less than or equal to the Rayleigh length zr
in order to neglect the radius of curvature of the Gaussian
beam. Second, the results of Eqs. �14� and �15� apply only
for large times when the diffusion approximation of the ra-
diative transfer equation is valid.

III. SEPARATION OF COHERENT AND INCOHERENT
INTENSITIES

In order to achieve a local measurement of the diffusion
constant from the growth of the diffusive halo, the incoherent
and coherent intensities have to be separated. In this section,
an original method is proposed. It relies on the “antisymme-
trization” of the symmetric interelement matrix H�t� mea-
sured in the real space, which allows one to make a multiple-
scattering path and its counterpart interferes destructively in
the k� space. Then, by achieving Gaussian beamforming on
this antisymmetric matrix, the mean intensity �Eq. �8�� dis-
plays an “anticone” instead of the usual CB enhancement:
the coherent intensity is subtracted rather than added to the
incoherent intensity. Then, both intensities can be deduced
from the cone and its “anticone.”

A. Principle

Let us assume for simplicity that the interelement impulse
responses hij�t� are totally decorrelated one from each other.
From Eqs. �7� and �8� the following expression for the aver-
aged backscattered intensity after Gaussian beamforming
IGB�X ,T� is obtained:

IGB�X,T� = 
l1=1

N


m1=1

N


l2=1

N


m2=1

N

�kl1,m1
�T, f�kl2,m2

* �T, f��l1,E�f�

��m1,R�f��l2,E
* �f��m2,R

* �f�� f ,�XE,XR�, �17�

where �l,E�f�=��xl−XE ,−a−zr /2 , 2�f
c

�. Because of the deco-
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rrelation assumption and reciprocity, only the terms contain-
ing the products kl1,m1

�T , f�kl1,m1

* �T , f� and
km1,l1

�T , f�kl1,m1

* �T , f� survive the average. The first product
consists of an incoherent summation of multiple-scattering-
paths intensity: it corresponds to the incoherent intensity.
The second one results from interference between multiple-
scattering paths and their reciprocal counterparts: it is linked
to the coherent intensity. Finally, the incoherent �Iinc

GB� and
coherent intensities �Icoh

GB� after Gaussian beamforming are
given by

Iinc
GB�X,T� = 

l1=1

N


m1=1

N

��kl1,m1
�T, f��l1,E�f��m1,R�f��2� f ,�XE,XR�,

�18�

Icoh
GB�X,T� = 

l1=1

N


m1=1

N

�kl1,m1
�T, f�km1,l1

* �T, f��l1,E�f�

��m1,R�f��m1,E
* �f��l1,R

* �f�� f ,�XE,XR�. �19�

If the reciprocity symmetry is respected, the interelement
matrix H�t� is symmetric. From H�t�, an antisymmetric ma-
trix HA�t� can be defined as follows:

�1� for i
 j, hij
A =hij;

�2� for i= j, hii
A=0;

�3� for i j, hij
A =−hij.

By replacing the measured responses kij�T , f� by the fic-
titious responses kij

A�T , f� in Eqs. �18� and �19�, the incoher-
ent �Iinc

GB,A� and coherent �Icoh
GB,A� intensities obtained from

HA�t� can be expressed as

Iinc
GB,A�X,T� = Iinc

GB�X,T�

− 
l1=1

N

��kl1,l1
�T, f��l1,E�f��l1,R�f��2� f ,�XE,XR�,

�20�

Icoh
GB,A�X,T� = − Icoh

GB�X,t�

+ 
l1=1

N

��kl1,l1
�T, f��l1,E�f��l1,R�f��2� f ,�XE,XR�.

�21�

The physical �and fictitious� interpretation of the “antisym-
metrization” procedure would be to build an antireciprocal
medium, i.e., a medium for which the impulse responses
from i to j and j to i are exactly out of phase �hij

A =−hji
A�. In

such a medium, there would be no coherent backscattering
cone, but an “anticone” instead, at exact backscattering. In-
deed, the interference between any multiple-scattering path
and its reciprocal counterpart, which is represented by the
product ki,j�T , f�kj,i

* �T , f�in Eq. �19�, would be destructive. As
a result, the coherent intensity obtained from HA �Eq. �21�� is
equal to the opposite of that obtained from the symmetric
matrix H plus a residual term, due to the nulling of the di-
agonal terms. As the incoherent intensity corresponds to the
summation of the individual intensities of multiple-scattering

paths, the minus sign between hij
A and hji

A has no influence on
Iinc

GB,A, which remains equal to Iinc
GB, except for the same re-

sidual term. Finally, when the total �coherent+incoherent�
backscattered intensity IGB,A is calculated, the residual term
vanishes and IGB,A is given by

IGB,A = Iinc
GB,A + Icoh

GB,A = Iinc
GB − Icoh

GB . �22�

Even though the antireciprocal medium has no physical ex-
istence, from a mathematical point of view the advantage of
this trick is to separate the coherent and incoherent contribu-
tions in the intensity backscattered from the real medium.
The incoherent and coherent intensities are obtained by sum-
ming and subtracting, respectively, the intensities corre-
sponding to the symmetric �experimental� and the antisym-
metric �fictitious� cases.

Iinc
GB =

IGB + IGB,A

2
, �23�

Icoh
GB =

IGB − IGB,A

2
. �24�

Actually, in the simple case of Gaussian beams, the separa-
tion of the coherent and incoherent terms could have been
achieved more simply. Since the waist width w0 is known,
from Eq. �15� one can easily calculate and subtract the co-
herent part from the total intensity. Nevertheless, as it is
shown in Sec. III B, the coherent backscattering peak width
is slightly larger than w0 because of the size of the array
elements, so a direct subtraction of the coherent part would
have been a possible source of error. The advantage of the
antisymmetrization technique is that it does not require the
beam to be Gaussian. It can be generalized to any kind of
illumination. However, it relies on the assumption that the
responses hlm are fully decorrelated �or at least, have a finite
correlation length�, which is not the case when single scat-
tering dominates. The antisymmetrization technique can suc-
cessfully separate the coherent and the incoherent contribu-
tions to the total intensity only at times such that the single-
scattering intensity can be neglected compared to the
multiple-scattering contribution.

B. Experimental results

The experimental setup is shown in Fig. 1. The experi-
mental process has already been described in Sec. II A. The
distance a is 27.5 mm. An array of N=128 elements has
been used. The random-scattering sample consists of steel
rods �CL=5.7 mm/�s, CT=3 mm/�s, radius 0.4 mm, den-
sity 7.85 kg/ l� randomly distributed with a concentration n
=29.54 rods/cm2. The frequency-averaged elastic mean-free
path le is 3.15±0.15 mm for this medium between 2.5 and
3.5 MHz �17�. Once the interelement matrix H is measured,
the averaged backscattered intensity obtained with Gaussian
beamforming IGB�X ,T� is calculated as described in Sec.
II C. The virtual array obtained with Gaussian beamforming
contains 43 virtual elements, which correspond to the axial
position of the collimated beams. The pitch p� of this virtual
array is 1 mm. The beam waist width w0 is 1 mm. The cor-
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responding intensity profile obtained at T=70 �s is shown in
Fig. 2�a�. The total intensity contains the incoherent inten-
sity, which spreads far from the source, and the coherent
intensity, which is only observed near the source. From this
intensity distribution, the separation between the coherent
and incoherent intensities is difficult. As a consequence, the
“antisymmetrization” method described in the previous sub-
section is applied. The interelement matrix H is made anti-
symmetric and the corresponding intensity IGB,A�X ,T� is
shown in Fig. 2�a�. An “anticone” is obtained as it is pre-
dicted by Eq. �22�. Then, the addition and subtraction of
IGB�X ,T� and IGB,A�X ,T� give access to the incoherent and
coherent intensities �Fig. 2�b��. The incoherent intensity
looks like a Gaussian curve as it is predicted by Eq. �14�, the
residual fluctuations are due to a lack of averaging. The co-
herent intensity profile is compared to its theoretical expres-
sion �Eq. �15�� in Fig. 2�d�. The experimental result and the
theoretical prediction are in a good agreement. The small
mismatch comes from the fact that transducers are not point-
like sources and so the continuous approach used in Sec. II D
does not model perfectly the experimental conditions.

IV. LOCAL MEASUREMENT OF THE DIFFUSION
CONSTANT

In this section, local measurements of the diffusion con-
stant D are achieved, based on Gaussian beamforming and
the “antisymmetrization” technique. To this end, a random
scattering sample containing two parts with different concen-
trations of scatterers has been used �see Fig. 3�. The first
sample consists of steel rods randomly distributed with a
concentration n1=12 rods/cm2. The frequency-averaged

scattering mean-free path l1
e is 7.7±0.3 mm for this medium

between 2.5 and 3.5 MHz �17�. The second sample consists
of the same steel rods but with a concentration n2

=29.54 rods/cm2. The corresponding scattering mean-free
path is l2

e =3.15±0.15 mm �17�. The array sample distance a
is 27.5 mm.

FIG. 2. Separation of the co-
herent and incoherent intensities.
�a� Backscattered intensity ob-
tained after Gaussian beamform-
ing performed on matrix H �gray
continuous line� and the antisym-
metric matrix HA �dark dashed
line�. �b� Incoherent �continuous
line� and coherent �dashed line�
intensities obtained from the cone
and “anticone” displayed in �a�.
�c� The incoherent intensity
�circles� is fitted with a Gaussian
curve �continuous line� whose
variance W2 allows one to deter-
mine the diffusion constant D. �d�
The coherent intensity �circles� is
compared to its theoretical expres-
sion �continuous line� given by
Eq. �15�.

FIG. 3. Experimental process used to obtain a local measure-
ment of the diffusion constant D. Two scattering samples are placed
side by side in front of the 128-element array. These two samples
differ by their concentrations in steel rods. The array can be moved
with a motor. The space is divided into areas of 4 mm width. When
a Gaussian beam is emitted at x=XE and received at x=XR, the
measured backscattered intensity is attributed to the area that con-
tains X= �XE+XR� /2.

ALEXANDRE AUBRY AND ARNAUD DERODE PHYSICAL REVIEW E 75, 026602 �2007�

026602-6



A. Experimental process

We use Gaussian beamforming to mimic a virtual array of
43 sources/receivers with a 1 mm pitch, for each position of
the real array. The Gaussian beam waist width w0 is 1 mm.
The real 128-element array can be moved parallel to the front
face of the sample with a motor. The experimental procedure
is divided into four steps:

�1� The interelement matrix H�t� is recorded.
�2� The emission/reception on every point of the virtual

array is calculated in the computer and yields HGB�XE ,XR�.
�3� The antisymmetrization technique is applied to obtain

the incoherent contribution of the backscattered intensity.
�4� The 128-element array is translated by 0.72 mm and

the same procedure is repeated.
The region to image has been divided into 4-mm-wide

areas �see Fig. 3�. The aim is to obtain a measurement of D,
at the scale of 4 mm, by a fit of the incoherent contribution.
The inversion procedure is very crude: when a Gaussian
beam is focused at XE �in emission� and XR �in reception�,
the resulting diffusive halo is attributed to the area with a
spatial coordinate X= �XE+XR� /2. The diffusive halos corre-
sponding to the same area are averaged, in order to reduce
the speckle fluctuations. A typical example is represented in
Fig. 4, where the growth of the averaged halo with time is
obvious.

B. Experimental results

At each time, the incoherent intensity profile has been
fitted with a Gaussian curve with a variance W2. Figure 2�c�
depicts an example of fit of the incoherent intensity at a
given time. The best value W2 is chosen such that the scalar
product between the normalized Gaussian curve and normal-
ized data is maximum. The model described in Sec. II D
predicts that the temporal evolution of W2�T� should be equal
to 2DT. Thus, a linear fit of W2�T� gives access to the diffu-
sion constant D. In Fig. 5, the temporal evolution of W2 is
shown for the two areas located at X=−10 mm �low-
concentrated sample� and at X= +10 mm �high-concentrated

sample�. At X=−10 mm, the measured diffusion constant is
3.9 mm2/�s, whereas at X= +10 mm, the diffusion constant
is 2.4 mm2/�s. This is not surprising: the diffusion constant
decreases with the concentration of scatterers. Note that the
linear fit is applied from T=60 �s only, which corresponds
to a typical penetration depth of 6l1

e. Before this time, the
diffusion approximation is not valid yet and the evolution of
W2 is not linear. Even if the condition le
zr is not strictly
fulfilled for medium 1�X
0�, the experimental results shows
that the model is still valid if le and zr are of the same order
of magnitude. The same data processing has been applied to
each area and the spatial evolution of the diffusion constant
D has been obtained and is shown in Fig. 6. A cutoff of the
diffusion constant is observed at the border between the

FIG. 4. Incoherent intensity corresponding to the area located at
X= +10 mm. The intensity is normalized with its maximum at each
time.

FIG. 5. Temporal evolution of the variance W2 of the Gaussian
curve, which fits the incoherent intensity profile from T
=60 �s to T=130 �s. The circles correspond to the area located at
X=−10 mm �low-concentrated sample� and the crosses to the area
located at X= +10 mm �high-concentrated sample�. A linear fit of
W2 is performed in each case �continuous lines� and provides a
measurement of the diffusion constant. For X=−10 mm, the mea-
sured diffusion constant is D=3.9 mm2/�s, whereas, for
X= +10 mm, the measured diffusion constant is D=2.4 mm2/�s.

FIG. 6. Spatial evolution of the measured diffusion constant. For
each area, the diffusion constant has been estimated and is plotted
as a function of the lateral position X.
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high-concentrated and the low-concentrated parts �X=0�.
The diffusion constant is about 4.0 mm2/�s for the low-
concentrated medium and 2.4 mm2/�s for the high-
concentrated one. The spatial resolution is intrinsically lim-
ited by the transport mean-free path l*. Here, the transition
for the diffusion constant spreads over 10 mm, which gives
an order of magnitude for the spatial resolution of such a
measurement. A better resolution would be obtained if the
spatial mesh was denser. But, in this case, the average of the
backscattered intensity would not be satisfying: residual fluc-
tuations of the intensity pattern would be too high because of
the lack of average over disorder configurations. Conse-
quently, a compromise has to be found between the density
of the mesh and a sufficient average over disorder configu-
rations. Moreover, the spatial resolution is limited by the
spreading of the diffusive halo characterized by the typical
length L: near the border �X=0�, the diffusive halo spreads
in both media, so the measured diffusion constant corre-
sponds to an average of the diffusion constants of both me-
dia. The method proposed in this study does not allow one to
achieve a three-dimensional image of a diffusive medium.
Indeed, the medium is supposed to be homogeneous in the
direction of depth �z� to achieve a local measurement of the
diffusion constant D�x ,y� at the scale of L. Yet this tech-
nique could provide a two-dimensional �2D� map of a diffu-
sive medium from backscattered measurements taken at its
surface.

V. CONCLUSION

In this study, we have investigated the possibility to mea-
sure locally the diffusion constant of an acoustic pulsed wave
propagating in a strongly disordered 2D medium. To this
end, Gaussian beamforming has been used and allows one to
observe the local growth of the diffusive halo via the inco-
herent intensity. An original method to separate the coherent
and incoherent intensities has been presented and applied to
the case of ultrasonic waves. This method is based on the
“antisymmetrization” of the interelement matrix; it creates an
artificial antireciprocity, which allows one to separate the
coherent backscattering peak from the incoherent back-
ground. The technique proposed in this paper has been ap-
plied experimentally to the observation of a gradient of con-
centration in scatterers from the spatial evolution of the
diffusion constant. Experimental results are very encourag-
ing and show that this technique would be of great interest to
achieve 2D imaging of real multiple-scattering media.
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